- «Taladro» redirige aquí. Para otras acepciones véase Taladro (desambiguación).
La taladradora es la máquina herramienta donde se mecanizan la mayoría de los agujeros que se hacen a las piezas en los talleres mecánicos. Destacan estas máquinas por la sencillez de su manejo. Tienen dos movimientos: El de rotación de la broca que le imprime el motor eléctrico de la máquina a través de una transmisión por poleas y engranajes, y el de avance de penetración de la broca, que puede realizarse de forma manual sensitiva o de forma automática, si incorpora transmisión para hacerlo.
Se llama taladrar a la operación de mecanizado que tiene por objeto producir agujeros cilíndricos en una pieza cualquiera, utilizando como herramienta una broca. La operación de taladrar se puede hacer con un taladro portátil, con una máquina taladradora, en un torno, en una fresadora, en un centro de mecanizado CNC o en una mandrinadora.
De todos los procesos de mecanizado, el taladrado es considerado como uno de los procesos más importantes debido a su amplio uso y facilidad de realización, puesto que es una de las operaciones de mecanizado más sencillas de realizar y que se hace necesario en la mayoría de componentes que se fabrican.
Las taladradoras descritas en este artículo, se refieren básicamente a las utilizadas en las industrias metalúrgicas para el mecanizado de metales, otros tipos de taladradoras empleadas en la cimentaciones de edificios y obras públicas así como en sondeos mineros tienen otras características muy diferentes y serán objeto de otros artículos específicos.
Historia[]
El precursor del taladrado fue probablemente el molinillo de hacer fuego. Consistía en una varilla cilíndrica de madera, cuyo sistema de giro fue desarrollándose progresivamente, primero accionando con las palmas de las manos, después mediante un cordel arrollado a la varilla del que se tiraba alternativamente de sus extremos, según figura en un grabado egipcio de 1440 a. C.
Un procedimiento muy antiguo para taladrar piedra, según un bajorelieve egipcio de 2700 a. C. consistía en un robusto eje que llevaba inserto una punta de pedernal para taladrar y en la parte superior un mango para facilitar el giro y la incorporación de dos macetas para regular el giro.
Con el descubrimiento del arco de violín se produjo un adelanto para conseguir el movimiento de giro. El sistema consiste en arrollar una cuerda, al eje porta brocas, atada por sus extremos a un arco de madera, que con el impulso de la mano del hombre, hace girar la pieza en movimiento de vaivén.
Otro sistema muy utilizado fue el berbiquí de cuerda, que consiste en un eje porta herramienta de madera que lleva incorporado un volante de inercia. A dicho eje se arrolla una cuerda atada por sus extremos a un travesaño que impulsado por la mano del hombre se consigue un giro alternativo.
El antiguo berbiquí de carpintero construido de madera, fue evolucionando en el tiempo. El berbiquí de eje porta herramientas de acero roscado, lleva incorporado en dicho eje una cabeza giratoria con un alojamiento cuadrado, donde se acopla la broca y un carrete tuerca, produciéndose un giro de vaivén, cuando se ejerce una presión longitudinal.
El berbiquí de giro continuo representa un avance sobre el anterior, lográndose el giro mediante el roscado en el eje porta brocas, de dos filetes helicoidales en sentido contrario, incorporándose en un extremo del carrete, una tuerca a izquierdas y en el opuesto otro a derechas.
El berbiquí de giro continuo, construido por Heyerhoff accionado por manivela y juego de engranajes representó un importante avance. Se construyeron taladros de sobremesa accionados manualmente con manivela y versiones de regulador de bolas y juego de engranajes. A partir del siglo XV, se utiliza la energía hidráulica para taladrar gruesos troncos de madera destinados a diversos fines, entre otros a tuberías para conducir el agua. A finales del siglo XV, Leonardo da Vinci diseña un taladro horizontal para taladros profundos.[1]
John Wilkinson en 1775 construyó, por encargo de Watt, una mandrinadora más avanzada técnicamente y de mayor precisión, accionada igual que las anteriores por medio de una rueda hidráulica. Con esta máquina, equipada con un ingenioso cabezal giratorio y desplazable, se consiguió un error máximo: “del espesor de una moneda de seis peniques en un diámetro de 72 pulgadas”, tolerancia muy grosera pero suficiente para garantizar el ajuste y hermetismo entre pistón y cilindro.
Ante la necesidad de taladrar piezas de acero, cada vez más gruesas, Nasmyth fue el primero que construyó hacia 1838, un taladro de sobremesa totalmente metálico, con giro de eje portabrocas accionado a mano o por transmisión. Algunos años después, en 1850, Whitworth fabricó el primer taladro de columna accionado por transmisión a correa y giro del eje porta brocas, a través de un juego de engranajes cónicos. Llevaba una mesa porta piezas regulable verticalmente mediante el sistema de piñón cremallera. En 1860 se produce un acontecimiento muy importante para el taladrado, al inventar el suizo Martignon la broca helicoidal. El uso de estas brocas se generalizó rápidamente, puesto que representaba un gran avance en producción y duración de la herramienta con relación a las brocas punta de lanza utilizadas hasta la citada fecha.
La necesidad de taladrar piezas pesadas y voluminosas dio lugar a la construcción de un taladro radial por Sharp, Roberts & Co, hacia el año 1851. A partir de 1898, con el descubrimiento del acero rápido por parte de Taylor y White, se fabrican nuevas herramientas con las que se triplica la velocidad periférica de corte, aumentando la capacidad de desprendimiento de viruta, del orden de siete veces, utilizando máquinas adaptadas a las nuevas circunstancias.
El sistema de generación polifásico de Tesla en 1887 hizo posible la disponibilidad de la electricidad para usos industriales, consolidándose como una nueva fuente de energía capaz de garantizar el formidable desarrollo industrial del siglo XX. Aparece justo en el momento preciso, cuando las fuentes de energía del siglo XIX se manifiestan insuficientes. Los motores de corriente continua fabricados a pequeña escala, y los de corriente alterna, reciben un gran impulso a principios de siglo, reemplazando a las máquinas de vapor y a las turbinas que accionaban hasta ese momento las transmisiones de los talleres industriales. Poco después, muy lenta pero progresivamente, se acoplan directamente de forma individualizada a la máquina-herramienta.
La exigencia de calidad y la fuerte evolución productiva del automóvil contribuyeron al desarrollo de la máquina-herramienta, la metrología y la aplicación de los procedimientos de fabricación en serie. La fabricación de piezas intercambiables aumenta constantemente, y se hace necesario mejorar las prestaciones de matricería y utillaje. Para dar respuesta al problema, el ingeniero suizo Prrenond Jacot diseña y fabrica una punteadora vertical con mesa de coordenadas polares, en la que se ejecutan operaciones con una precisión jamás lograda hasta entonces.
En 1908 Henry Ford fabrica el primer automóvil producido en serie, modelo T, y en 1911 instala el primer transportador en cadena en Highland Park, iniciando la producción en masa. Se perfeccionan una gran cantidad de máquinas-herramienta adaptadas a las características exigidas por la industria del automóvil.
Desde principios del siglo XX hasta el nacimiento del control numérico (CN) e incluso después, se mantienen prácticamente en todas las máquinas las formas arquitectónicas que, en este sentido, alcanzaron su plenitud a finales del siglo XIX. Sin embargo evolucionaron y se construyeron otras más potentes, rígidas, automáticas y precisas, pudiendo alcanzar mayores velocidades de giro, con la incorporación a los cabezales de cojinetes o rodamientos de bolas; contribuyendo rentablemente al extraordinario incremento de productividad logrado por la industria en general y en especial por la automovilística y aeronáutica.
Esta evolución fue debida fundamentalmente, por un lado, al descubrimiento de nuevas herramientas de corte como: carburo de silicio, acero rápido y, a partir de 1926, se produce otro avance importante con el descubrimiento por parte de la empresa alemana Krupp del carburo cementado metal duro, presentado en la feria de Leipzig en 1927 con la denominación de Widia. Por otro lado se registra la automatización de diversos movimientos mediante la aplicación de motores eléctricos, sistemas hidráulicos, neumáticos y eléctricos.
A partir de 1925 en Estados Unidos las revistas especializadas tratan de las unidades autónomas de mecanizado y nace la noción de transferencia de las piezas a mecanizar. Teniendo en cuenta que, salvo algunas excepciones, todas las operaciones de mecanizado que combinan la rotación de una herramienta con un movimiento de avance se pueden realizar con estas unidades; se ha descubierto la máquina ideal para que, dispuesta en línea, pueda realizar distintas operaciones mediante transferencia de la pieza a mecanizar. A partir del año 1945 las fábricas de automóviles utilizan de manera generalizada máquinas transfer, compuestas de unidades autónomas, en el mecanizado de bloques y culatas.
La electrónica -y la informática que está soportada por la primera- han provocado una nueva revolución industrial. El punto de partida hay que situarlo en 1945, cuando dos científicos de la Universidad de Pennsilvanya, John W. Manclhy y J. Presper Ecker crearon la primera computadora electrónica digital que ha funcionado realmente en el mundo. Se denominó ENAC, era voluminosa, consumía mucha energía y era difícil de programar, pero funcionaba.
En 1948, John T. Parsons inicia la aplicación del control numérico a la máquina-herramienta, con el objeto de resolver el problema del fresado de superficies complejas tridimensionales para la aeronáutica. En 1949 Parson contrató con el Instituto Tecnológico de Massachussets el diseño de los servomecanismos de control para una fresadora. En 1952 funcionaba un control experimental, aplicado a una fresadora Cincinnati. La programación utilizaba un código binario sobre cinta perforada, y la máquina ejecutaba movimientos simultáneos coordinados sobre tres ejes. En 1955 se presentan unas pocas máquinas en la Feria de Chicago, gobernadas por tarjetas y cintas perforadas La U.S. Air Force se interesa por el sistema y formula un pedido de 170 máquinas-herramienta por valor de cincuenta millones de dólares, beneficiándose del mismo varios prestigiosos fabricantes americanos. Pero los modelos desarrollados durante los años cincuenta y sesenta fueron poco eficaces y resultaron muy caros.
Fue a partir de la década de 1960, con el desarrollo de la microelectrónica, cuando el CN pasa a ser (CNC) por la integración de una computadora en el sistema. Pero definitivamente fue durante los años ochenta cuando se produce la aplicación generalizada del CNC, debido al desarrollo de la electrónica y la informática, provocando una revolución donde en 2007 todavía estamos inmersos.[2]
Proceso de taladrado[]
El taladrado es un término que cubre todos los métodos para producir agujeros cilíndricos en una pieza con herramientas de arranque de viruta. Además del taladrado de agujeros cortos y largos, también cubre el trepanado y los mecanizados posteriores tales como escariado, mandrinado, roscado y brochado. La diferencia entre taladrado corto y taladrado profundo es que el taladrado profundo es una técnica específica diferente que se utiliza para mecanizar agujeros donde su longitud es varias veces más larga(8-9) que su diámetro.
Con el desarrollo de brocas modernas el proceso de taladrado ha cambiado de manera drástica, porque con las brocas modernas se consigue que un taladro macizo de diámetro grande se pueda realizar en una sola operación, sin necesidad de un agujero previo, ni de agujero guía, y que la calidad del mecanizado y exactitud del agujero evite la operación posterior de escariado.
Como todo proceso de mecanizado por arranque de viruta la evacuación de la misma se torna crítica cuando el agujero es bastante profundo, por eso el taladrado está restringido según sean las características del mismo. Cuanto mayor sea su profundidad, más importante es el control del proceso y la evacuación de la viruta.[3]
Producción de agujeros[]
Los factores principales que caracterizan un agujero desde el punto de vista de su mecanizado son:
- Diámetro
- Calidad superficial y tolerancia
- Material de la pieza
- Material de la broca
- Longitud del agujero
- Condiciones tecnológicas del mecanizado
- Cantidad de agujeros a producir
- Sistema de fijación de la pieza en el taladro.
Tipos de agujeros[]
La casi totalidad de agujeros que se realizan en las diferentes taladradoras que existen guardan relación con la tornillería en general, es decir la mayoría de agujeros taladrados sirven para incrustar los diferentes tornillos que se utilizan para ensamblar unas piezas con otras de los mecanismos o máquinas de las que forman parte.
Según este criterio hay dos tipos de agujeros diferentes los que son pasantes y atraviesan en su totalidad la pieza y los que son ciegos y solo se introducen una longitud determinada en la pieza sin llegarla a traspasar, tanto unos como otros pueden ser lisos o pueden ser roscados.
Rescepto de los agujeros pasantes que sirven para incrustar tonillos en ellos los hay de entrada avellanada, para tornillos de cabeza plana, agujeros de dos diámetros para insertar tornillos allen y agujeros cilíndricos de un solo diámetro con la cara superior refrentada para mejorar el asiento de la arandela y cabeza del tornillo. El diámetro de estos agujeros corresponde con el diámetro exterior que tenga el tornillo.
Respecto de los agujeros roscados el diámetro de la broca del agujero debe ser la que corresponda de acuerdo con el tipo de rosca que se utilice y el diámetro nominal del tornillo. En los tornillos ciegos se debe profundizar más la broca que la longitud de la rosca por problema de la viruta del macho de roscar
Parámetros de corte del taladrado[]
Los parámetros de corte fundamentales que hay que considerar en el proceso de taladrado son los siguientes:
- Elección del tipo de broca más adecuado
- Sistema de fijación de la pieza
- Velocidad de corte (Vc) de la broca expresada de metros/minuto
- Diámetro exterior de la broca u otra herramienta
- Revoluciones por minuto (rpm) del husillo portabrocas
- Avance en mm/rev, de la broca
- Avance en mm/mi de la broca
- Profundidad del agujero
- Esfuerzos de corte
- Tipo de taladradora y accesorios adecuados
Velocidad de corte[]
Se define como velocidad de corte la velocidad lineal de la periferia de la broca u otra herramienta que se utilice en la taladradora (Escariador, macho de roscar, etc). La velocidad de corte, que se expresa en metros por minuto (m/min), tiene que ser elegida antes de iniciar el mecanizado y su valor adecuado depende de muchos factores, especialmente de la calidad y tipo de broca que se utilice, de la dureza y la maquinabilidad que tenga el material que se mecanice y de la velocidad de avance empleada. Las limitaciones principales de la máquina son su gama de velocidades, la potencia de los motores y de la rigidez de la fijación de la pieza y de la herramienta.
A partir de la determinación de la velocidad de corte se puede determinar las revoluciones por minuto que tendrá el husillo portafresas según la siguiente fórmula:
Donde Vc es la velocidad de corte, n es la velocidad de rotación de la herramienta y Dc es el diámetro de la herramienta.
La velocidad de corte es el factor principal que determina la duración de la herramienta. Una alta velocidad de corte permite realizar el mecanizado en menos tiempo pero acelera el desgaste de la herramienta. Los fabricantes de herramientas y prontuarios de mecanizado, ofrecen datos orientativos sobre la velocidad de corte adecuada de las herramientas para una duración determinada de la herramienta, por ejemplo, 15 minutos. En ocasiones, es deseable ajustar la velocidad de corte para una duración diferente de la herramienta, para lo cual, los valores de la velocidad de corte se multiplican por un factor de corrección. La relación entre este factor de corrección y la duración de la herramienta en operación de corte no es lineal.[4]
La velocidad de corte excesiva puede dar lugar a:
- Desgaste muy rápido del filo de corte de la herramienta.
- Deformación plástica del filo de corte con pérdida de tolerancia del mecanizado.
- Calidad del mecanizado deficiente.
La velocidad de corte demasiado baja puede dar lugar a:
- Formación de filo de aportación en la herramienta.
- Efecto negativo sobre la evacuación de viruta.
- Baja productividad.
- Coste elevado del mecanizado.
Velocidad de rotación de la broca[]
La velocidad de rotación del husillo portaborcas se expresa habitualmente en revoluciones por minuto (rpm). En las taladradoras convencionales hay una gama limitada de velocidades, que dependen de la velocidad de giro del motor principal y del número de velocidades de la caja de cambios de la máquina. En las taladradoras de control numérico, esta velocidad es controlada con un sistema de realimentación que habitualmente utiliza un variador de frecuencia y puede seleccionarse una velocidad cualquiera dentro de un rango de velocidades, hasta una velocidad máxima.
La velocidad de rotación de la herramienta es directamente proporcional a la velocidad de corte y al diámetro de la herramienta.
Velocidad de avance[]
El avance o velocidad de avance en el taladrado es la velocidad relativa entre la pieza y la herramienta, es decir, la velocidad con la que progresa el corte. El avance de la herramienta de corte es un factor muy importante en el proceso de taladrado.
Cada broca puede cortar adecuadamente en un rango de velocidades de avance por cada revolución de la herramienta, denominado avance por revolución (frev). Este rango depende fundamentalmente diámetro de la broca, de la profundidad del agujero, además del tipo de material de la pieza y de la calidad de la broca. Este rango de velocidades se determina experimentalmente y se encuentra en los catálogos de los fabricantes de brocas. Además esta velocidad está limitada por las rigideces de las sujeciones de la pieza y de la herramienta y por la potencia del motor de avance de la máquina. El grosor máximo de viruta en mm es el indicador de limitación más importante para una broca. El filo de corte de las herramientas se prueba para que tenga un valor determinado entre un mínimo y un máximo de grosor de la viruta.
La velocidad de avance es el producto del avance por revolución por la velocidad de rotación de la herramienta.
Al igual que con la velocidad de rotación de la herramienta, en las taladradoras convencionales la velocidad de avance se selecciona de una gama de velocidades disponibles, mientras que las taaladradoras de control numérico pueden trabajar con cualquier velocidad de avance hasta la máxima velocidad de avance de la máquina.
Efectos de la velocidad de avance
- Decisiva para la formación de viruta
- Afecta al consumo de potencia
- Contribuye a la tensión mecánica y térmica
La elevada velocidad de avance da lugar a:
- Buen control de viruta
- Menor tiempo de corte
- Menor desgaste de la herramienta
- Riesgo más alto de rotura de la herramienta
- Elevada rugosidad superficial del mecanizado.
La velocidad de avance baja da lugar a:
- Viruta más larga
- Mejora de la calidad del mecanizado
- Desgaste acelerado de la herramienta
- Mayor duración del tiempo de mecanizado
- Mayor coste del mecanizado
Tiempo de mecanizado[]
Para poder calcular el tiempo de mecanizado de un taladro hay que tener en cuenta la longitud de aproximación y salida de la la broca de la pieza que se mecaniza. La longitud de aproximación depende del diámetro de la broca.
Fuerza específica de corte[]
La fuerza de corte es un parámetro necesario para poder calcular la potencia necesaria para efectuar un determinado mecanizado. Este parámetro está en función del avance de la broca , de la velocidad de corte, de la maquinabilidad del material, de la dureza del material, de las características de la herramienta y del espesor medio de la viruta. Todos estos factores se engloban en un coeficiente denominado Kx. La fuerza específica de corte se expresa en N/mm2.[5]
Potencia de corte[]
La potencia de corte Pc necesaria para efectuar un determinado mecanizado se calcula a partir del valor del volumen de arranque de viruta, la fuerza específica de corte y del rendimiento que tenga la taladradora. Se expresa en kilovatios (kW).
Esta fuerza específica de corte Fc, es una constante que se determina por el tipo de material que se está mecanizando, geometría de la herramienta, espesor de viruta, etc.
Para poder obtener el valor de potencia correcto, el valor obtenido tiene que dividirse por un determinado valor (ρ) que tiene en cuenta la eficiencia de la máquina. Este valor es el porcentaje de la potencia del motor que está disponible en la herramienta puesta en el husillo.
donde
- Pc es la potencia de corte (kW)
- Ac es el diámetro de la broca (mm)
- f es la velocidad de avance (mm/min)
- Fc es la fuerza específica de corte (N/mm2)
- ρ es el rendimiento o la eficiencia de la máquina
Tipos de máquinas taladradoras[]
Las máquinas taladradoras se pueden reunir en seis grupos separados:
- Taladradoras sensitivas
- Taladradoras de columnas
- Taladradoras radiales
- Taladradoras de torreta
- Taladradora de husillos múltiples
- Centros de mecanizado CNC
Taladradoras sensitivas[]
Corresponden a este grupo las taladradoras de accionamiento eléctrico o neumático más pequeñas. La mayoría de ellas son portátiles y permiten realizar agujeros de pequeño diámetro y sobre materiales blandos. Básicamente tienen un motor en cuyo eje se acopla el portabrocas y son presionadas en su fase trabajo con la fuerza del operario que las maneja. Pueden tener una sola o varias velocidades de giro. Hay pequeñas taladradoras sensitivas que van fijas en un soporte de columna con una bancada para fijar las piezas a taladrar. Las taladradoras sensitivas portátiles son muy usadas en tareas domésticas y de bricolaje.
Taladradoras de columna[]
Estas máquinas se caracterizan por la rotación de un husillo vertical en una posición fija y soportado por un bastidor de construcción, tipo C modificado. La familia de las máquinas taladradoras de columna se componen de las taladradora de columna con avance regulado por engranajes, la taladradora de producción de trabajo pesado, la taladradora de precisión, y la taladradora para agujeros profundos.
Los taladros de columna de avance por engranaje son característicos de esta familia de máquinas y se adaptan mejor para ilustrar la nomenclatura. Los componentes principales de la maquina son los siguientes
- Bancada: es el armazón que soporta la máquina, consta de una base o pie en la cual va fijada la columna sobre la cual va fijado el cabezal y la mesa de la máquina que es giratoria en torno a la columna.
- Motor: estas máquinas llevan incorporado un motor eléctrico de potencia variable según las capacidades de la máquina.
- Cabezal: es la parte de la máquina que aloja la caja de velocidades y el mecanismo de avance del husillo. El cabezal portabrocas se desliza hacia abajo actuando con unas palancas que actívan un mecanismo de piñón cremallera desplazando toda la carrera que tenga la taladradora, el retroceso del cabezal es automático cuando cede la presión sobre el mismo.
El avance de taladrado automático de trabajo está regulado en mm/revolución de el eje.
- Poleas de transmisión: el movimiento del motor al husillo, se realiza mediante correas que enlazan dos poleas escalonadas con las que es posible variar el número de revoluciones de acuerdo a las condiciones de corte del taladrado y el husillo portabrocas. Hay taladradoras que además de las poleas escalonadas incorporan una caja de engranajes para regular las velocidades del husillo y del avance de penetración.
- Nonio: las taladradoras disponen de un nonio con el fin de controlar la profundidad del taladrado. Este nonio tiene un tope que se regula cuando se consigue la profundidad deseada.
- Husillo: está equipado con un agujero cónico para recibir el extremo cónico de las brocas, o del portabrocas que permite el montaje de brocas delgadas , o de otras herramientas de corte que se utilicen en la maquina, tales como machos o escariadores.
- Mesa: está montada en la columna y se la puede levantar o bajar y sujetar en posición para soportar la pieza a la altura apropiada para permitir taladrar en la forma deseada.
Taladradoras radiales[]
Estas máquinas se identifican por el brazo radial que permite la colocación de la cabeza a distintas distancias de la columna y además la rotación de la cabeza alrededor de la columna. Con esta combinación de movimiento de la cabeza, se puede colocar y sujetar el husillo para taladrar en cualquier lugar dentro del alcance de la maquina, al contrario de la operación de las maquinas taladradoras de columna, las cuales tienen una posición fija del husillo. Esta flexibilidad de colocación del husillo hace a los taladros radiales especialmente apropiados para piezas grandes, y, por lo tanto, la capacidad de los taladros radiales como clase es mayor que la de los taladros de columna. El peso de la cabeza es un factor importante para conseguir una precisión de alimentación eficiente sin una tensión indebida del brazo. Los principales componentes del taladro radial son:
- Base: es la parte básica de apoyo para la máquina y que también soporta a la pieza durante las operaciones de taladro. Los taladros radiales están diseñados principalmente para piezas pesadas que se montan mejor directamente sobre la base de la máquina. Algunas máquinas incluso tienen bases agrandadas para permitir el montaje de dos o más piezas al mismo tiempo para que no se tenga que interrumpir la producción en tanto se retira una pieza y se coloca otra en su lugar.
- Columna: es una pieza de forma tubular , y que gira alrededor de, una columna rígida (tapada) montada sobre la base.
- Brazo: soporta al motor y el cabezal, corresponde a la caja de engranajes de la maquina de columna. Se puede mover hacia arriba y hacia abajo sobre la columna y sujetarse a cualquier altura deseada.
- Cabezal: contiene todos los engranajes para las velocidades y para los avances y así como los controles necesarios para los diferentes movimientos de la máquina. Se puede mover hacia adentro o hacia fuera del brazo y sujetar en posición el husillo de taladrar a cualquier distancia de la columna. Este movimiento, combinado con la elevación, descenso y rotación del brazo, permite taladrar a cualquier punto dentro de la capacidad dimensional de la máquina.
Los taladros radiales son considerados como las taladradoras más eficientes y versátiles. Estas máquinas proporcionan una gran capacidad y flexibilidad de aplicaciones a un costo relativamente bajo. Además, la preparación es rápida y económica debido a que, pudiéndose retirar hacia los lados tanto el brazo como la cabeza, por medio de una grúa, se pueden bajar directamente las piezas pesadas sobre la base de la maquina. En algunos casos, cuando se trata usualmente de piezas grandes, los taladros radiales van montados realmente sobre rieles y se desplazan al lado de las piezas para eliminar la necesidad de un manejo y colocación repetidos. Los taladros radiales montados en esta forma son llamados maquinas del tipo sobre rieles.
Taladradoras de torreta[]
Con la introducción del Control Numérico en todas las máquinas –herramientas, las taladradoras de torreta han aumentado su popularidad tanto para series pequeñas como para series de gran producción porque hoy día la mayoría de estas máquinas están reguladas por una unidad CNC. Estas máquinas se caracterizan por una torreta de husillos múltiples. La taladradora de torreta permite poder realizar varias operaciones de taladrado en determinada secuencia sin cambiar herramientas o desmontar la pieza.
Los componentes básicos de la máquina, excepto la torreta, son parecidos a los de las máquinas taladradoras de columna. Se dispone de taladros de torreta de una serie de tamaños desde la pequeña máquina de tres husillos montada sobre banco o mesa hasta la máquina de trabajo pesado con torreta de ocho lados. Para operaciones relativamente sencillas, la pieza se puede colocar a mano y la torreta se puede hacer avanzar a mano o mecánicamente, para ejecutar un cierto numero de operaciones tales como las que se hacen en una máquina taladradora del tipo de husillos múltiples. Según se añaden a la operación controles más complicados, el taladro de torreta se vuelve más y más un dispositivo ahorrador de tiempo.
Lo habitual de las taladradoras de torreta actuales es que tienen una mesa posicionadora para una colocación precisa de la pieza. Esta mesa puede tomar la forma de una mesa localizadora accionada a mano, una mesa posicionadora accionada separadamente y controlada por medio de cinta, o con topes precolocados; o puede tomar la forma de una unidad completamente controlada por Control Numérico donde también se programa y ejecuta el proceso de trabajo.
Taladradoras de husillos múltiples[]
Esta familia de taladradoras cubre todo el campo desde el grupo sencillo de las máquinas de columna hasta las diseñadas especialmente para propósitos específicos de gran producción.
Las máquinas estándar de husillos múltiples: se componen de dos o más columnas, cabezas y husillos estándar, montados sobre una base común. Los taladros de husillos múltiples facilitan la ejecución de una secuencia fija de las operaciones de taladrado por medio del desplazamiento de la pieza de estación en estación a lo largo de la mesa.
Las aplicaciones más comunes de este tipo de máquinas es para eliminar el cambio de herramientas para una secuencia de operaciones. Aunque las máquinas taladradoras de husillos múltiples todavía se fabrican, están cediendo rápidamente su popularidad a las máquinas taladradoras de torreta accionadas por control numérico que pueden llevar un almacén de herramientas bastante grande.
Hay dos tipos básicos de taladradoras de husillos múltiples:
- Taladradoras de unión universal: son extremadamente versátiles y han alcanzado una posición muy importante en la manufactura de producción de tipo bajo a medio. Las máquinas taladradoras de unión universal se fabrican en una serie completa de tipos estándar con cierto número de husillos que se pueden ajustar dentro de un área determinada. Las máquinas taladradoras de unión universal se caracterizan por su gran número de husillos que se pueden colocar en cualquier posición dentro del área de la mesa para taladrar cualquier plantilla de agujeros preseleccionada.
Además de los catálogos de tamaños estándar, las máquinas de unión universal se construyen en muchos otros tamaños con plantillas para el taladrado y el número de husillos para trabajos específicos.
Estas máquinas también son muy flexibles pero requieren de todos los agujeros sean taladrados simultáneamente en una línea recta. Obviamente, se puede taladrar cualquier disposición de agujeros colocados en una serie de líneas rectas simplemente desplazando la pieza. En las máquinas de husillos en línea el avance se proporciona sencillamente haciendo descender el puente de los husillos o elevando la mesa. La selección del avance, tanto por medio del puente como de la mesa se basa en el tipo de trabajo y las operaciones implicadas. Las máquinas de unión universal y gran área se proporcionan también con avances tanto por medio del puente como por la elevación de la mesa.
- Taladradoras de producción de husillo fijo: consiste en cierto número de husillos en una posición fija, recibiendo su fuerza motriz a través de una serie de engranajes accionados por un solo motor del tamaño apropiado. Toman la forma de una sencilla máquina individual, tanto vertical como horizontal, o accionada en ángulo, o bien pueden tomar la forma de cierto número de tales unidades colocadas juntas para hacer una máquina especial.
Las culatas de motor y los bloques de cilindros de motor son piezas clásicas que se mecanizan en este tipo de taladradoras que se conocen con el nombre de transfer.
Centros de mecanizado CNC[]
La instalación masiva de centros de mecanizado CNC en las industrias metalúrgicas ha supuesto un gran revulsivo en todos los aspectos del mecanizado tradicional.
Un centro de mecanizado ha unido en una sola máquina y en un solo proceso tareas que antes se hacían en varias máquinas, taladradoras, fresadoras, mandrinadoras, etc, y además efectúa los diferentes mecanizados en unos tiempos mínimos antes impensables debido principalmente a la robustez de estas máquinas a la velocidad de giro tan elevada que funciona el husillo y a la calidad extraordinaria de las diferentes herramientas que se utilizan.
Así que un centro de mecanizado incorpora un almacén de herramientas de diferentes operaciones que se pueden efectuar en las diferentes caras de las piezas cúbicas, con lo que con una sola fijación y manipulación de la pieza se consigue el mecanizado integral de las caras de las piezas, con lo que el tiempo total de mecanizado y precisión que se consigue resulta muy valioso desde el punto de vista de los costes de mecanizado, al conseguir más rapidez y menos piezas defectuosas.
Gestión económica del taladrado[]
Cuando los ingenieros diseñan una máquina, un equipo o un utensilio, lo hacen mediante el acoplamiento de una serie de componentes de materiales diferentes y que requieren procesos de mecanizado para conseguir las tolerancias de funcionamiento adecuado.
La suma del coste de la materia prima de una pieza, el coste del proceso de mecanizado y el coste de las piezas fabricadas de forma defectuosa constituyen el coste total de una pieza. Desde siempre el desarrollo tecnológico ha tenido como objetivo conseguir la máxima calidad posible de los componentes así como el precio más bajo posible tanto de la materia prima como de los costes de mecanizado. Para reducir el coste de taladrado y del mecanizado en general se ha actuado en los siguientes frentes:
- Conseguir materiales cada vez mejor mecanizables, materiales que una vez mecanizados en blando son endurecidos mediante tratamientos térmicos que mejoran de forma muy sensible sus prestaciones mecánicas de dureza y resistencia principalmente.
- Conseguir herramientas de mecanizado de una calidad extraordinaria que permite aumentar de forma considerable las condiciones tecnológicas del mecanizado, o sea, más revoluciones del husillo portabrocas , más avance de trabajo de la broca y más tiempo de duración de su filo de corte.
- Conseguir taladradoras , más robustas, rápidas, precisas y adaptadas a las necesidades de producción que consiguen reducir sensiblemente el tiempo de mecanizado así como conseguir piezas de mayor calidad y tolerancia más estrechas.
Para disminuir el índice de piezas defectuosas se ha conseguido automatizar al máximo el trabajo de las taladradoras, disminuyendo drásticamente el taladrado manual, y construyendo taladradoras automáticas muy sofisticadas o guiados por control numérico que ejecutan un mecanizado de acuerdo a un programa establecido previamente.
Características técnicas de las brocas[]
Las brocas son la herramienta más común que utilizan las taladradoras, si bien también pueden utilizar machos para roscar a máquina, escariadores para el acabado de agujeros de tolerancias estrechas, avellanadores para chaflanar agujeros, o incluso barras con herramientas de mandrinar
Las brocas tienen diferente geometría dependiendo de la finalidad con que hayan sido fabricadas. Diseñadas específicamente para quitar material y formar, por lo general, un orificio o una cavidad cilíndrica, la intención en su diseño incluye la velocidad con que el material ha de ser removido y la dureza del material y demás cualidades características del mismo.
Elementos constituyentes de una broca[]
Entre algunas de las partes y generalidades comunes a la mayoría de las brocas están:
- Longitud total de la broca. Existen brocas normales, largas y súper-largas.
- Longitud de corte. Es la profundidad máxima que se puede taladrar con una broca y viene definida por la longitud de la parte helicoidal.
- Diámetro de corte. Es el diámetro del orificio obtenido con la broca. Existen diámetros normalizados y también se pueden fabricar brocas con diámetros especiales.
- Diámetro y forma del mango. El mango es cilíndrico para diámetros inferiores a 13 mm, que es la capacidad de fijación de un portabrocas normal. Para diámetros superiores, el mango es cónico (tipo Morse).
- Ángulo de corte. El ángulo de corte normal en una broca es el de 118°. También se puede utilizar el de 135°, quizá menos conocido pero, quizás, más eficiente al emplear un ángulo obtuso más amplio para el corte de los materiales.
- Número de labios o flautas. La cantidad más común de labios (también llamados flautas) es dos y después cuatro, aunque hay brocas de tres flautas o brocas de una (sola y derecha), por ejemplo en el caso del taladrado de escopeta.
- Profundidad de los labios. También importante pues afecta a la fortaleza de la broca.
- Ángulo de la hélice. Es variable de unas brocas a otras dependiendo del material que se trate de taladrar. Tiene como objetivo facilitar la evacuación de la viruta.
- Material constitutivo de la broca. Existen tres tipos básicos de materiales:
- Acero al carbono, para taladrar materiales muy blandos (madera, plástico, etc.)
- Acero rápido (HSS), para taladrar aceros de poca dureza
- Metal duro (Widia), para taladrar fundiciones y aceros en trabajos de gran rendimiento.
- Acabado de la broca. Dependiendo del material y uso especifico de la broca, se le puede aplicar una capa de recubrimiento que puede ser de óxido negro, de titanio o de níquel, cubriendo total o parcialmente la broca, desde el punto de corte.
Características de las brocas de metal duro[]
Para las máquinas taladradoras de gran producción se utilizan brocas macizas de metal duro para agujeros pequeños y barras de mandrinar con plaquitas cambiables para el mecanizado de agujeros grandes. Su selección se hace teniendo en cuenta el material de la pieza, el tipo de aplicación y las condiciones de mecanizado.
La variedad de las formas de las plaquitas es grande y está normalizada. Asimismo la variedad de materiales de las herramientas modernas es considerable y está sujeta a un desarrollo continuo.[3]
La adecuación de los diferentes tipos de plaquitas que se utilizan en las brocas de metal duro ya sean soldadas o cambiables se adecuan a las características del material a mecanizar y se indican a continuación y se clasifican según una Norma ISO/ANSI para indicar las aplicaciones en relación a la resistencia y la tenacidad que tienen.
SERIE | ISO | Características |
Serie P | ISO 01, 10, 20, 30, 40, 50 | Ideales para el mecanizado de acero, acero fundido, y acero maleable de viruta larga. |
Serie M | ISO 10, 20, 30, 40 | Ideales para el mecanizado acero inoxidable, ferrítico y martensítico, acero fundido, acero al manganeso, fundición aleada, fundición maleable y acero de fácil mecanización. |
Serie K | ISO 01, 10, 20, 30 | Ideal para el mecanizado de fundición gris, fundición en coquilla, y fundición maleable de viruta corta. |
Serie N | ISO 01, 10. 20, 30 | Ideal para el mecanizado de metales no-férreos |
Serie S | Pueden ser de base de níquel o de base de titanio. Ideales para el mecanizado de aleaciones termorresistentes y súperaleaciones. | |
Serie H | ISO 01, 10, 20, 30 | Ideal para el mecanizado de materiales endurecidos. |
Accesorios de las taladradoras[]
Las taladradoras utilizan como accesorios principales:
- Portabrocas.
- Pinzas de fijación de brocas.
- Utillajes para posicionar y sujetar las piezas.
- Plantilla con casquillos para la guía de las brocas.
- Granete
- Mordazas de sujección de piezas
- Elementos robotizados para la alimentación de piezas y transfer de piezas.
- Afiladora de brocas
Portabrocas[]
El portabrocas es el dispositivo que se utiliza para fijar la broca en la taladradora cuando las brocas tienen el mango cilíndrico. El portabrocas va fijado a la máquina con un mango de cono Morse según sea el tamaño del portabrocas.
Los portabrocas se abren y cierran de forma manual, aunque hay algunos que llevan un pequeño dispositivo para poder ser apretados con una llave especial. Los portabrocas más comunes pueden sujetar brocas de hasta 13 mm de diámetro. Las brocas de diámetro superior llevan un mango de cono morse y se sujetan directamente a la taladradora.
Mordaza[]
En las taladradoras es muy habitual utilizar mordazas u otros sitemas de apriete para sujetar las piezas mientras se taladran. En la sujección de las piezas hay que controlar bien la presión y la zona de apriete para que no se deterioren.
Pinzas de apriete cónicas[]
Cuando se utilizan cabezales multihusillos o brocas de gran producción se utilizan en vez de portabrocas, cuyo apriete es débil, pinzas cónicas atornilladas que ocupan menos espacio y dan un apriete más rígido a la herramienta.
Granete[]
Se denomina granete a una herramienta manual que tiene forma de puntero de acero templado afilado en un extremo con una punta de 60º aproximadamente que se utiliza para marcar el lugar exacto que se ha trazado previamente en una pieza donde haya que hacerse un agujero, cuando no se dispone de una plantilla adecuada.
Plantillas de taladrado[]
Cuando se mecanizan piezas en serie, no se procede a marcar los agujeros con granetes sino que se fabrican unas plantillas que se incorporan al sistema de fijación de la pieza debidamente referenciada. Las plantillas llevan incorporado unos casquillos guías para que la broca pueda encarar los agujeros de forma exacta sin que se produzcan desviaciones de la punta de la broca. En operaciones que llevan incorporado un escariado o un roscado posterior los casquillos guías son removibles y se cambian cuando se procede a escariar o roscar el agujero.
Afiladora de brocas[]
En las industrias metalúrgicas que realizan muchos taladros, se dispone de máquinas especiales de afilado para afilar las brocas cuando el filo de corte se ha deteriorado. El afilado se puede realizar en una amoladora que tenga la piedra con grano fino pero la calidad de este afilado manual suele ser muy deficiente porque hay que ser bastante experto para conseguir los ángulos de corte adecuados. La mejor opción es disponer de afiladoras de brocas.
Control de viruta y fluido refrigerante[]
Estos dos factores son muy importantes en el proceso de taladrado. La generación de formas y tamaños de viruta adecuados, y también su evacuación, es vital para realizar correctamente cualquier operación de taladrado. Si el proceso no es correcto, cualquier broca dejará de cortas después de poco tiempo porque la viruta se quedará atascada en el agujero. Con las brocas modernas las velocidades de perforación son muy elevadas pero esto solo ha sido posible gracias a la evacuación eficaz de la viruta mediante el fluido de corte.
Todas las brocas helicoidales disponen de canales para evacuar la viruta. Durante el mecanizado se inyecta fluido de corte en la punta de la broca para lubricarla y para evacuar la viruta por los canales.
La formación de la viruta está determinada por el material de la pieza, la geometría de la herramienta, la velocidad de corte y en cierta medida por el tipo de lubricante que se utilice. La forma y longitud de la viruta son aceptables siempre que permitan su evacuación de manera fiable.
Normas de seguridad en el taladrado[]
Cuando se está trabajando en una taladradora , hay que observar una serie de requisitos para asegurarse de no tener ningún accidente que pudiese ocasionar cualquier pieza que fuese despedida de la mesa o la viruta si no sale bien cortada. Para ello es indispensable que las piezas estén bien sujetas. Pero también de suma importancia es el prevenir ser atrapado(a) por el movimiento rotacional de la máquina, por ejemplo por la ropa o por el cabello largo. La precaución es indispensable, puesto que el ser atrapado accidentalmente puede ser fatal.[6]
1 | Utilizar equipo de seguridad: gafas de seguridad, caretas, etc.. |
2 | No utilizar ropa holgada o muy suelta. Se recomiendan las mangas cortas. |
3 | Utilizar ropa de algodón. |
4 | Utilizar calzado de seguridad. |
5 | Mantener el lugar siempre limpio. |
6 | Si se mecanizan piezas pesadas utilizar polipastos adecuados para cargar y descargar las piezas de la máquina. |
7 | Es preferible llevar el pelo corto. Si es largo no debe estar suelto sino recogido. |
8 | No vestir joyería, como collares o anillos. |
9 | Siempre se deben conocer los controles y funcionamiento de la máquina. Se debe saber como detener su operación. |
10 | Es muy recomendable trabajar en un area bien iluminada que ayude al operador, pero la iluminación no debe ser excesiva para que no cause demasiado resplandor. |
Perfil profesional de los operarios de taladradoras[]
No existe una profesión técnica especializada para el manejo de taladradoras, puesto que son unas máquinas sencillas de manejar y con breves instrucciones dadas a pie de máquina es suficiente para que una persona responsable la sepa manejar.
Sin embargo actualmente muchas operaciones de taladrado se realizan en centros de mecanizado o taladradoras de control numérico y, debido al alto coste que tiene el tiempo de mecanizado en estas máquinas, ha sido necesario formar nuevos técnicos en ellas, especialmente programadores de control numérico.
Programadores de taladradoras y centros de mecanizado CNC[]
Las taladradoras y centros de mecanizado requieren en primer lugar un técnico programador que elabore el programa de ejecución que tiene que realizar la máquina para el mecanizado de una determinada pieza.
En este caso debe tratarse de un buen conocedor de los factores que intervienen en el mecanizado y que son los siguientes:
- Prestaciones de la máquina
- Prestaciones y disponibilidad de herramientas
- Sujeción de las piezas
- Tipo de material a mecanizar y sus características de mecanización
- Uso de refrigerantes
- Cantidad de piezas a mecanizar
- Acabado superficial y rugosidad
- Tolerancia de mecanización admisible
Además deberá conocer bien los parámetros tecnológicos del taladrado, que son:
- Velocidad de corte óptima a que debe realizarse el taladrado
- Avance óptimo del mecanizado
- Velocidad de giro (RPM) del husillo
- Sistema de cambio de herramientas.
A todos estos requisitos deben unirse una correcta interpretación de los planos de las piezas y la técnica de programación que utilice de acuerdo con el equipo que tenga la taladradora.[7]
Véase también[]
- Barrena de mano
- Brochado
- El Taladro
- Escariado
- Mandrinado
- Taladrado profundo
- Trepanado
- Roscado
Referencias[]
- ↑ Museo máquina de herramienta de Elgóibar
- ↑ Patxi Aldabaldetrecu. Reseña histórica de la máquina-herramienta
- ↑ 3,0 3,1 Sandvik Coromant (2006), Guía Técnica de Mecanizado, AB Sandvik Coromant 2005.10
- ↑ Productividad, en CoroKey 2006, Sandvik
- ↑ Sandvik Coromant (2006). Guía Técnica de Mecanizado.
- ↑ Manual de Seguridad y Salud en operaciones con herramientas manuales, maquinaria de taller y soldadura. Universidad Politécnica de Valencia
- ↑ * Cruz Teruel, Francisco (2005). Control numérico y programación. ISBN 84-267-1359-9.
Bibliografía[]
- Millán Gómez, Simón (2006). Procedimientos de Mecanizado. ISBN 84-9732-428-5.
- Sandvik Coromant (2006). Guía Técnica de Mecanizado.
- Larbáburu Arrizabalaga, Nicolás (2004). Máquinas. Prontuario. Técnicas máquinas herramientas.. ISBN 84-283-1968-5.
- Varios autores (1984). Enciclopedia de Ciencia y Técnica. Tomo 13. Taladro y perforadora.. ISBN 84-345-4490-3.
- Cruz Teruel, Francisco (2005). Control numérico y programación. ISBN 84-267-1359-9.
Enlaces externos[]
- Wikimedia Commons alberga contenido multimedia sobre Taladradora.Commons
- Museo de máquina-herramienta. Historia de las taladradoras
- Asociación Española de Fabricantes de Máquinas-herramienta
: Diccionario[]
: Drill
Esta página usa contenido de Wikipedia. El artículo original se encuentra en :Taladradora. La lista de autores puede ser encontrada en el Historial. Como en CeraWiki, el texto de Wikipedia esta disponible bajo Licencia Creative Commons Reconocimiento Compartir Igual 3.0. |