FANDOM


Carbon dioxide pressure-temperature phase diagram international

Diagrama de fase para el dióxido de carbono en función de presión y temperatura.

En física y química se observa que, para cualquier sustancia o elemento material, modificando sus condiciones de temperatura o presión, pueden obtenerse distintos estados o fases, denominados estados de agregación de la materia, en relación con las fuerzas de unión de las partículas (moléculas, átomos o iones) que la constituyen.

La materia se nos presenta en diversos estados de agregación, todos con propiedades y características diferentes, y aunque los más conocidos y observables cotidianamente son cuatro, las llamadas fases sólida, líquida, gaseosa y plasmática, también existen otros estados observables bajo condiciones extremas de presión y temperatura.

Estado sólido Editar

A bajas temperaturas, los materiales se presentan como cuerpos de forma compacta y precisa; y sus átomos a menudo se entrelazan formando estructuras cristalinas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Los sólidos son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. La presencia de pequeños espacios intermoleculares caracteriza a los sólidos dando paso a la intervención de las fuerzas de enlace que ubican a las celdillas en una forma geométrica.

Las sustancias en estado sólido presentan las siguientes características:

  • Forma definida
  • Volumen constante
  • Cohesión (atracción)
  • Vibración
  • Rigidez
  • Incompresibilidad (no pueden comprimirse)
  • Resistencia a la fragmentación
  • Fluidez muy baja o nula
  • Algunos de ellos se subliman (yodo)
  • Volumen tensoPlantilla:Demostrar

Estado líquido Editar

Si se incrementa la temperatura el sólido va "descomponiéndose" hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos. El estado líquido presenta las siguientes características:

  • Cohesión menor
  • Movimiento energía cinética.
  • No poseen forma definida.
  • Toma la forma de la superficie o el recipiente que lo contiene.
  • En el frío se comprime, excepto el agua.
  • Posee fluidez a través de pequeños orificios.
  • Puede presentar difusión.
  • No tiene forma fija pero si volumen. La variabilidad de forma y el presentar unas propiedades muy específicas son características de los líquidos.

Estado gaseoso Editar

Incrementando aún más la temperatura se alcanza el estado gaseoso. Las moléculas del gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos.

El estado gaseoso presenta las siguientes características:

  • Cohesión casi nula.
  • Sin forma definida.
  • Su volumen sólo existe en recipientes que lo contengan.
  • Pueden comprimirse fácilmente.
  • Ejercen presión sobre las paredes del recipiente contenedor.
  • Las moléculas que lo componen se mueven con libertad.
  • Ejercen movimiento ultra dinámico.

Estado plasma Editar

El plasma es un gas ionizado, o sea, los átomos que lo componen se han separado de algunos de sus electrones o de todos ellos. De esta forma el plasma es un estado parecido al gas pero compuesto por electrones y cationes (iones con carga positiva), separados entre si y libres, por eso es un excelente conductor. Un ejemplo muy claro es el Sol. En la baja Atmósfera terrestre, cualquier átomo que pierde un electrón (cuando es alcanzado por una partícula cósmica rápida).Pero a altas temperaturas es muy diferente. Cuanto más caliente está el gas, más rápido se mueven sus moléculas y átomos, y a muy altas temperaturas las colisiones entre estos átomos, moviéndose muy rápido, son suficientemente violentas para liberar los electrones. En la atmósfera solar, una gran parte de los átomos están permanentemente «ionizados» por estas colisiones y el gas se comporta como un plasma. A diferencia de los gases fríos (por ejemplo, el aire a temperatura ambiente), los plasmas conducen la electricidad y son fuertemente influidos por los campos magnéticos. La lámpara fluorescente, contiene plasma (su componente principal es vapor de mercurio) que calienta y agita la electricidad, mediante la línea de fuerza a la que está conectada la lámpara. La línea, positivo eléctricamente un extremo y negativo, causa que los iones positivos se aceleren hacia el extremo negativo, y que los electrones negativos vayan hacia el extremo positivo. Las partículas aceleradas ganan energía, colisionan con los átomos, expulsan electrones adicionales y mantienen el plasma, aunque se recombinen partículas. Las colisiones también hacen que los átomos emitan luz y esta forma de luz es más eficiente que las lámparas tradicionales. Los letreros de neón y las luces urbanas funcionan por un principio similar y también se usaron en electrónicas.

Perfil de la ionósfera Editar

La parte superior de la ionósfera se extiende en el espacio muchos miles de kilómetros y se combina con la magnetósfera, cuyo plasma está generalmente más rarificado y también más caliente. Los iones y los electrones del plasma de la magnetósfera provienen de la ionósfera que está por debajo y del viento solar y muchos de los pormenores de su entrada y calentamiento no están claros aún.

Existe el plasma interplanetario, el viento solar. La capa más externa del Sol, la corona, está tan caliente que no sólo están ionizados todos sus átomos, sino que aquellos que comenzaron con muchos electrones, tienen arrancados la mayoría (a veces todos), incluidos los electrones de las capas más profundas que están más fuertemente unidos. En la corona del Sol se ha detectado la luz característica del hierro que ha perdido 13 electrones.

Esta temperatura extrema evita que el plasma de la corona permanezca cautivo por la gravedad solar y, así, fluye en todas direcciones, llenando el Sistema Solar más allá de los planetas más distantes.

Condensado de Bose-Einstein Editar

Esta nueva forma de la materia fue obtenida el 5 de julio de 1995, por los físicos Eric Cornell, Wolfgan Ketterle y Carl Wieman, los cuales fueron galardonados en 2001 con el premio nobel de la física. Los científicos lograron enfriar los átomos a una temperatura 300 veces más bajo que lo que se había logrado anteriormente. Se le ha llamado "BEC, Bose - Einstein Condensado" y es tan frío y denso que ellos aseguran que los átomos pueden quedar inmóviles.Sin embargo todavía no se sabe cuál será el mejor uso que se le pueda dar a este descubrimiento. Este estado fué predicho por Einstein y Bose en 1924.

Condensado de Fermi Editar

Creado en la universidad de Colorado por primera vez en 1999, el primer condensado de Fermi formado por átomos fue creado en 2003. El condensado fermiónico, considerado como el sexto estado de la materia, es una fase superfluida formada por partículas fermiónicas a temperaturas bajas. Esta cercanamente relacionado con el condensado de Bose-Einstein. A diferencia de los condensados de Bose-Einstein, los fermiones condensados se forman utilizando fermiones en lugar de bosones.

Dicho de otra forma, el condensado de Fermi es un estado de agregación de la materia en la que la materia adquiere superfluidez. Se crea a muy bajas temperaturas, extremadamente cerca del cero absoluto.

Los primeros condensados fermiónicos describían el estado de los electrones en un superconductor. El primer condensado fermiónico atómico fue creado por Deborah S. Jin en 2003. Un condensado quiral es un ejemplo de un condensado fermiónico que aparece en las teorías de los fermiones sin masa con rompimientos a la simetría quiral.

Es considerado una falacia para muchos científicos. La naturaleza del condensado implica que todas las partículas que lo conforman se encuentran en el mismo estado cuántico, lo cual es sólo posible si dichas partículas son bosones. Ahora bien, el Principio de exclusión de Pauli impide que cualquier pareja de Fermiones ocupe el mismo estado cuántico al mismo tiempo. Por lo tanto un condensado fermiónico no puede existir.

¿Cuál es la diferencia? Los bosones son sociables; les gusta estar juntos. Como regla general, cualquier átomo con un número par de electrones+protones+neutrones es un bosón. Así, por ejemplo, los átomos del sodio ordinario son bosones, y pueden unirse para formar condensados Bose-Einstein. Los fermiones, por otro lado, son antisociales. No pueden juntarse en el mismo estado cuántico (por el “Principio de Exclusión de Pauli” de la mecánica cuántica). Cualquier átomo con un número impar de electrones+protones+neutrones, como el potasio-40, es un fermión.

Supersólido (Posible nuevo estado) Editar

Este material es un sólido en el sentido de que la totalidad de los átomos del helio--(4) que lo componen están congelados en una película cristalina rígida, de forma similar a como lo están los átomos y las moléculas en un sólido normal como el hielo. La diferencia es que, en este caso, “congelado” no significa “estacionario”.

Como la película de helio-4 es tan fría (apenas un décimo de grado sobre el cero absoluto), comienzan a imperar las leyes de incertidumbre cuántica. En efecto, los átomos de helio comienzan a comportarse como si fueran sólidos y fluidos a la vez. De hecho, en las circunstancias adecuadas, una fracción de los átomos de helio comienza a moverse a través de la película como una sustancia conocida como “súper-fluido”, un líquido que se mueve sin ninguna fricción. De ahí su nombre de “súper-sólido”.

Otros estados de la materia Editar

Existen otros posibles estados de la materia; algunos de estos sólo existen bajo condiciones extremas, como en el interior de estrellas muertas, o en el comienzo del universo después del Big Bang o gran explosión:

Cambios de estado Editar

Estados

Diagrama de los cambios de estado entre los estados sólido, líquido y gaseoso.

Los cambios de estado descritos también se producen si se incrementa la presión manteniendo constante la temperatura. Así, el hielo de las pistas se funde por la presión ejercida por el peso de los patinadores. Esta agua sirve de lubricante, permitiendo el suave deslizamiento de los patinadores.

Para cada elemento o compuesto químico existen determinadas condiciones de presión y temperatura a las que se producen los cambios de estado, debiendo interpretarse, cuando se hace referencia únicamente a la temperatura de cambio de estado, que ésta se refiere a la presión de la atm. (la presión atmosférica). De este modo, en "condiciones normales" (presión atmosférica, 0 °C) hay compuestos tanto en estado sólido como líquido y gaseoso (S, L y G).

Los procesos en los que una sustancia cambia de estado son: la sublimación (S-G), la vaporización (L-G), la condensación (G-L), la solidificación (L-S), la fusión (S-L), y la sublimación inversa (G-S). Es importante aclarar que estos cambios de estado tienen varios nombres.

Plasma En física y química, se denomina plasma a un gas constituido por partículas cargadas (iones) libres y cuya dinámica presenta efectos colectivos dominados por las interacciones electromagnéticas de largo alcance entre las mismas. Con frecuencia se habla del plasma como un estado de agregación de la materia con características propias, diferenciándolo de este modo del estado gaseoso, en el que no existen efectos colectivos importantes.

Véase también Editar


Wikipedia-logo
Esta página usa contenido de Wikipedia. El artículo original se encuentra en  :Estado de agregación de la materia. La lista de autores puede ser encontrada en el Historial. Como en CeraWiki, el texto de Wikipedia esta disponible bajo Licencia Creative Commons Reconocimiento Compartir Igual 3.0.
El contenido de la comunidad está disponible bajo CC-BY-SA a menos que se indique lo contrario.